Metaheuristics for Optimization

E-G. Talbi

http://paradiseo.gforge.inria.fr
Introduction (1)

- High-dimensional and complex optimization problems in many areas of industrial concern → Telecommunication, Computational biology, Transportation and Logistics, Design, ...
- Problems of increasing size (combinatorial explosion)
 - Getting near-optimal solutions in a tractable time
- Using approached methods isn’t sufficient
 - Metaheuristics approach
 - Hybridization features
 - Large scale parallelism (Cluster & GRID Computing)
Popular NP-hard problems

- Permutation problems: traveling salesman, scheduling, ...
- Assignment: QAP, GAP, ...
- Grouping: partitioning, clustering, graph coloring ...
- Routing: VRP, CTP, ...
- Knapsack and packing
- and many more, etc
Tackling an academic COP. The Traveling Salesman Problem

- “Given a collection of N cities and the distance between each pair of them, the TSP aims at finding the shortest route visiting all of the cities”
- Symmetric TSP: \(\frac{(N-1)!}{2} \) candidate solutions
- Example

```
 1  8  10  4  3
V₀
/   /   /   /   /
|   |   |   |   |
V₁  V₂  V₃  V₄
8  4  10  6
6  6  6  6
6  6  9  4
3  5  4  4
```

Length: 26
Tackling an academic COP. The Traveling Salesman Problem

usa13509
Tackling a real-world COP. Design of cellular radio networks

- Financial context (cost of the network)
 - Number of sites
 - Quality of Service

- Network design
 - Positioning sites
 - Fixing a set of parameters for each antenna

- Very highly combinatorial (NP-hard)
A practical hard problem

- Three main features
 - A high number of potential configurations
 \(\rightarrow \equiv 4.8 \times 10^{2558}, 8.4 \times 10^{6494} \) and \(5.5 \times 10^{8541} \) candidate solutions (on different instances Arno 1.0, 3.0 et 3.1)
 - A CPU cost evaluation function (trigonometric functions, sorting algorithms, ...).
 - Need of a large amount of memory
 \(\rightarrow 512 \text{ Mo.}, 1 \text{ Go.} \) and \(2 \text{ Go.} \).
Introduction (2)

- Combinatorial Optimization Problems (COPs) in practice
 - Diversity
 - Continual *evolution* of the *modeling* (regards needs, objectives, constraints, ...)
 - Need to experiment many solving methods, techniques of hybridization, parameters, ...
Motivations

- A framework for the design of parallel hybrid metaheuristics dedicated to the mono/multi-objective resolution of COPs
 - Identifying abstract/specific features of both metaheuristics and main models of parallelization and hybridization
 - Insuring transparence of parallelism
 - Easily deploying on sequential architectures, parallel/distributed platforms and meta-computing grids
 - Validating the framework by tackling hard and real applications (modeling and solving)
Taxonomy (optimization methods)

- **Exact methods**: optimality and exploitation on small instances
- **Heuristics**: near-optimal solutions on large-size problem instances
Classification of metaheuristics

- Nature inspired vs. non nature inspired
- Population-based vs. single point search
- Dynamic vs. static objective function
- One vs. various neighborhood structures
- Memory usage vs. memory less methods
- Iterative vs. Greedy
- ...

Paradiseo
Single solution metaheuristics are *exploitation* oriented
Population-based metaheuristics are *exploration* oriented
Taxonomy (Population-based Metaheuristics)

Metaheuristics

Population

- Evol. algorithms
- Scatter search
- Ant colony

- Evol. programming
- Evol. strategies
- Genetic algorithms
- Genetic programming
History

• L. Fogel 1962 (San Diego, CA): *Evolutionary Programming*

• J. Holland 1962 (Ann Arbor, MI): *Genetic Algorithms*

• I. Rechenberg & H.-P. Schwefel 1965 (Berlin, Germany): *Evolution Strategies*

• J. Koza 1989 (Palo Alto, CA): *Genetic Programming*
The metaphor

<table>
<thead>
<tr>
<th>Evolution</th>
<th>Problem solving</th>
</tr>
</thead>
<tbody>
<tr>
<td>Individual</td>
<td>Candidate Solution</td>
</tr>
<tr>
<td>Fitness</td>
<td>Quality</td>
</tr>
<tr>
<td>Environment</td>
<td>Problem</td>
</tr>
</tbody>
</table>

- Based on the evolution of a population of individuals
- Evolution features
 - Variation operators (crossover, mutation) to increase diversity,
 - Selection of parents, replacement by offspring to decrease diversity
The ingredients

mutations

recombination

reproduction

selection

t

$t + 1$

mutation

recombination
Evolutionary cycle

1. Selection
2. Parents
3. Crossover
4. Mutation
5. Offspring
6. Replacement
7. Population
Evolutionary Algorithm procedure

- $t \leftarrow 0$
- $P \leftarrow \text{GenerateInitialPopulation}()$
- evaluate (P_t)
- do
 - Select P_{t+1} from P_t
 - Transform (P_t)
 - Evaluate (P_t)
 - $P_{t+1} \leftarrow \text{Replace} (P_t, P_{t+1})$
 - $t \leftarrow t + 1$
- While termination conditions not met
Domains of application

- Numerical, Combinatorial Optimisation
- System Modeling and Identification
- Planning and Control
- Engineering Design
- Data Mining
- Machine Learning
- Artificial Life
- ...

Paradiseo
Performances

- Acceptable performance at acceptable costs on a wide range of problems
- Intrinsic parallelism (robustness, fault tolerance)
- Superior to other techniques on complex problems with
 - lots of data, many free parameters
 - complex relationships between parameters
 - many (local) optima
Advantages

- No presumptions w.r.t. problem space
- Widely applicable
- Low development & application costs
- Easy to incorporate other methods
- Solutions are interpretable (unlike NN)
- Can be run interactively, accommodate user proposed solutions
- Provide many alternative solutions
- Robust regards any change of the environment (data, objectives, etc)
- Co-evolution, parallelism and distribution …
Disadvantages

- No guarantee for optimal solution within finite time (in general)
- May need parameter tuning
- Often computationally expensive, i.e. slow
Genetic Algorithms

- Developed: USA in the 1970’s
- Early names: J. Holland, K. DeJong, D. Goldberg
- Typically applied to:
 - discrete optimization
- Attributed features:
 - not too fast
 - good heuristic for combinatorial problems
- Special Features:
 - Traditionally emphasizes combining information from good parents (crossover)
 - many variants, e.g., reproduction models, operators
Genetic Algorithms (SGA)

<table>
<thead>
<tr>
<th>Representation</th>
<th>Binary strings</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombination</td>
<td>N-point or uniform</td>
</tr>
<tr>
<td>Mutation</td>
<td>Bitwise bit-flipping with fixed probability</td>
</tr>
<tr>
<td>Parent selection</td>
<td>Fitness-Proportionate</td>
</tr>
<tr>
<td>Survivor selection</td>
<td>All children replace parents</td>
</tr>
<tr>
<td>Speciality</td>
<td>Emphasis on crossover</td>
</tr>
</tbody>
</table>
Evolution Strategies

- Developed: Germany in the 1970’s
- Early names: I. Rechenberg, H.-P. Schwefel
- Typically applied to:
 - numerical optimisation
- Attributed features:
 - fast
 - good optimizer for real-valued optimisation
 - relatively much theory
- Special:
 - self-adaptation of (mutation) parameters standard
Evolution Strategies

<table>
<thead>
<tr>
<th>Representation</th>
<th>Real-valued vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombination</td>
<td>Discrete or intermediary</td>
</tr>
<tr>
<td>Mutation</td>
<td>Gaussian perturbation</td>
</tr>
<tr>
<td>Parent selection</td>
<td>Uniform random</td>
</tr>
<tr>
<td>Survivor selection</td>
<td>(μ,λ) or $(\mu+\lambda)$</td>
</tr>
<tr>
<td>Specialty</td>
<td>Self-adaptation of mutation step sizes</td>
</tr>
</tbody>
</table>
Evolutionary Programming

- Developed: USA in the 1960’s
- Early names: D. Fogel
- Typically applied to:
 - traditional EP: machine learning tasks by finite state machines
 - contemporary EP: (numerical) optimization
- Attributed features:
 - very open framework: any representation and mutation op’s OK
 - crossbred with ES (contemporary EP)
 - consequently: hard to say what “standard” EP is
- Special:
 - no recombination
 - self-adaptation of parameters standard (contemporary EP)
Evolutionary Programming

<table>
<thead>
<tr>
<th>Representation</th>
<th>Real-valued vectors</th>
</tr>
</thead>
<tbody>
<tr>
<td>Recombination</td>
<td>None</td>
</tr>
<tr>
<td>Mutation</td>
<td>Gaussian perturbation</td>
</tr>
<tr>
<td>Parent selection</td>
<td>Deterministic</td>
</tr>
<tr>
<td>Survivor selection</td>
<td>Probabilistic ($\mu+\mu$)</td>
</tr>
<tr>
<td>Specialty</td>
<td>Self-adaptation of mutation step sizes (in meta-EP)</td>
</tr>
</tbody>
</table>
Genetic Programming

- Developed: USA in the 1990’s
- Early names: J. Koza
- Typically applied to:
 - machine learning tasks (prediction, classification...)
- Attributed features:
 - competes with neural nets and alike
 - needs huge populations (thousands)
 - slow
- Special:
 - non-linear chromosomes: trees, graphs
 - mutation possible but not necessary (disputed!)
Genetic Programming

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Representation</td>
<td>Tree structures</td>
</tr>
<tr>
<td>Recombination</td>
<td>Exchange of subtrees</td>
</tr>
<tr>
<td>Mutation</td>
<td>Random change in trees</td>
</tr>
<tr>
<td>Parent selection</td>
<td>Fitness proportional</td>
</tr>
<tr>
<td>Survivor selection</td>
<td>Generational replacement</td>
</tr>
</tbody>
</table>
Books

Ant colony Optimization (ACO)
Ant colonies

- Artificial ants: Dorigo (1992)
- Imitate the cooperative behavior of ant colonies to solve optimization problems
- Use very simple communication mechanism: pheromone
 - Olfactive and volatile substance
 - Evolution: evaporation, reinforcement

A nature-inspired process

- During the trip, a pheromone is left on the ground.
- The quantity left depends on the amount of food found.
- The path is chosen accordingly to the quantity of pheromones.
- The pheromone has a decreasing action over time.
Ant colony procedure

- Do
 - Schedule activities
 - AntBasedSolution Construction
 - Pheromone Update
 - Daemons Actions
 - While termination conditions not met
Application to Combinatorial Optimization Problems

- **Traveling Salesman Problem**: T. Stützle, 1997
- **Vehicle Routing Problem**: Hartl et al., 1997
- **Graph Coloring**: Costa et Hertz, 1997
- **Frequency Assignment Problem**: Dicaro et al., 1997
- **Quadratic Assignment Problem**: Gambardella, Taillard et Dorigo, 1997
- **Set Covering**: E-G. Talbi et al., 1997
- **Graph Partitioning**: Kuntz et Snyers, 1994
Particle Swarm Optimization (PSO)
Particle Swarm

- Population based stochastic metaheuristic
- Dr. Eberhart and Dr. Kennedy (1995)
- Inspired by social behavior of bird flocking or fish schooling
- Similarities with genetic algorithm

A nature-inspired process

- Particles fly through the problem space
- Flight = add a velocity to the current position
- Social adaptation of knowledge
- Particles follow the current optimum particles («follow the bird which is nearest to the food »)
PSO procedure

- Do
 - Evaluate the velocities
 - Flight
 - Update the bests
- While termination conditions not met
Swarm construction

- Initialize positions P:
 \[P_i = \text{random} \]

- Initialize the first best position P_{best} of each particle:
 \[P_{i\text{ best}} = P_i \]
 (standard strategy)

- Initialize the global best P_{gbest} particle:
 \[P_{\text{gbest}} = \text{best}(P_i) \]
 (standard strategy)
Make the particles flying

- Evaluate the velocities:
 \[V_i = V_i + c_1 \times (P_{i\text{best}} - P_i) + c_2 \times (P_{gbest} - P_i) \]
 - local direction
 - global direction

 \(c_1 \) and \(c_2 = \) learning factors

- Perform the flight
 \[P_i = P_i + V_i \]
Topology

- Determines how the solution spread through the population
- Local, global, neighbourhood best?
- Affects the rate of convergence
- Advanced parallel search

Mean degree, Clustering, Heterogeneity
Update the particle’s best

- Update the best fitness value of each particle:
 - *If* P_i *better than* $P_i \text{best}$

 $$P_i \text{best} = P_i$$

- Update the global best:
 - *If* P_i *better than* P_{gbest}

 $$P_{gbest} = P_i$$
Application to Combinatorial Optimization Problems

- Transport: Venter, 2004
- Planning: Onwubolu, G. C. and Clerc, 2004
Scatter search and path relinking
Scatter Search and Path Relinking

- Scatter Search and its generalized form Path Relinking provide unifying principles for joining (or recombining) solutions based on generalized path constructions in Euclidean or neighborhood spaces.

Main operators

- **Diversification Generation Method**: Generate a collection of diverse trial solutions
- **Improvement Method**: Transform a trial solution into one or more enhanced trial solutions
- **Reference Set Update Method**: Build and maintain a reference set - "best" solutions found (quality, diversity)
- **Subset Generation Method**: Operate on the reference set, to produce a subset of its solutions as a basis for creating combined solutions
- **Solution Combination Method**: Transform a given subset of solutions produced by the Subset Generation Method
Overview

- Diversification Generation Method
- Repeat until $|P| = P\text{Size}$
- Improvement Method
- Subset Generation Method
- Solution Combination Method
- Reference Set Update Method
- Stop if MaxIter reached
- No more new solutions
- Improvement Method
- Diversification Generation Method
- Reference Set

P
Scatter Search procedure

- Create diversified population
- Generate Reference Set
- Do
 - Do
 - Subset Generation Method
 - Solution Combination Method
 - Improvement Method
 - Until first termination criterion is not reached
 - Reference Set Update Method
- Until other termination criterion is not reached
Estimation of Distribution Algorithm (EDA)
Estimation of Distribution Algorithm

- Based on the use of (unsupervised) density estimators/generative statistical models
- Idea is to convert the optimization problem into a search over probability distributions
- The probabilistic model is in some sense an explicit model of (currently) promising regions of the search space
EDA pseudo-code

- Initialize a probability model $Q(x)$
- Do
 - Create a population of points by sampling from $Q(x)$
 - Evaluate the objective function for each point
 - Update $Q(x)$ using selected population and $f()$ values
- While termination criterion not reached
EDA simplest probability model

- Population-based incremental Learning (PBIL)
 - Initial distribution $D=(0.5, \ldots, 0.5)$
 - Boucle:
 - Generation of the population
 - $X_i = 1$ if $r<D_i$ (r uniform in $[0,1]$)
 - $X_i = 0$ else
 - Evaluate and sort the population
 - Update the distribution
 \begin{equation}
 D = (1 - \alpha)D + \alpha \cdot X_{\text{best}}
 \end{equation}

S. Baluja, R. Caruana. Removing the Genetics from the Standard Genetic Algorithm. ICML'95
Other probability models

- Mutual Information Maximization for Input Clustering (MIMIC) regards pairwise dependances

- Bayesian Optimization Algorithm (BOA) for multivariate dependances

EDA: Applications

- Field of EDA is quite young. Much effort is focused on methodology rather than performance

- First applications
 - Knapsack problem
 - Job Shop Scheduling